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It is shown that three basic models of  the Flory-Stockmayer  theory of  poly- 
merization may all be described directly by means of a kinetic rate equation of a 
form first discussed by Smoluchowski, and correspond to the three known classes 
of  solutions to this equation. The kinetics of  gelation are discussed from the rate 
equation ; the nature of  both the Flory and the Stockmayer gelation theories is 
shown, and a new model of  gelation is proposed. Some new solutions to 
Smoluchowski 's  equation are given in an appendix. 
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polymerization; condensation polymerization; FIory-Stockmayer theory; 
Smoluchowski's coagulation equation; coagulation. 

1. I N T R O D U C T I O N  

Condensation polymerization is the process of polymer formation by the 
continual and universal linking of elemental chemical units. The progress of 
this process is characterized by the size distribution function, whose evolution 
may be predicted theoretically either by the statistical method of Flory ~1) and 
Stockmayer, ~2)'2 or alternatively as the solution of a kinetic rate equation, as 
first shown by Dostal and Raft. (3) In the present paper, we will sketch both of 
these methods of solution for three basic polymer models, showing that the 
two methods are equivalent. We will also discuss the gelation transition, 
unifying both the Flory and the Stockmayer models of gelation, and obtain 
for the first time the kinetics of gel formation. The kinetic description of 
these polymer problems turns out to be formally equivalent to the kinetics 

Supported by the U.S. DOE, the National Science Foundat ion,  and the Petroleum Research 
Fund.  

1 Depar tment  of  Mechanical Engineering, State University of  New York, Stony Brook, 
New York. 

2 Note that in Ref. 2, as well as those of  Ref. 1, the molecular weight distributions rather 
than the concentrations are discussed. 

241  

0022~,715/S0/0800-0241503.00/0 �9 1980 Plenum publishing Corporation 



242 Robert  M. Ziff  

of colloidal clustering and droplet growth, as first discussed by Smolu- 
chowski, (4)'3 and this analogy will also be discussed. 

The basic chemical monomers from which the polymers are formed will 
be called units. Those of the first polymer model which we will examine may 
be represented schematically as 

A-B (1) 

where A and B rcprcsent active areas on the molecule, often called functional 
groups, with the property that only a frec A and frcc B may bind together. 
Units of thc sccond model may bc reprcscntcd as 

B 

A / ~ A  (II) 

where the free A's and B's have the same reactive property as in the previous 
case, but because of the two A ends on each unit, networks or trees may form. 
Units of the third model may be represented as 

A 

A / ~ A  (Ill) 

and these A's have the propcrty that they may react and bind to each othcr. 
Wc assume two commonly made simplifying assumptions concerning thc 
growth of polymers from these units(1'2): 

(i) Thc polymers cannot bond with themselves, or cross-link. 
(ii) The reactivity of a frcc group is indcpcndcnt of the sizc of the 

polymer to which it is attached. 
Thc first assumption implics that closed rings or cycles cannot form, so 

that polymcrs of thc first typc will form linear chains and not rings, and thosc 
of sizes Vk(t), defined as the concentration (-number per unit volume) of 
k-mcrs, where a k-mcr is a polymer composed ofk units in any configuration. 
dation, breakup, or termination. 

The problcm is to find, for each model, thc timc-dcpcndent distribution 
of sizes Vk(t), defined as the concentration (=number per unit volume) of 
k-mers, where a k-mcr is a polymer composed ofk units in any configuration. 
Wc assumc that at t = 0 the systcm is monodispcrsc and consists only of 
monomers, and choose the unit of volume so that the conccntration of these 
monomcrs is unity. Thus wc take 

{10 k = l  
vk(0) = k > 1 (1) 

3 An account of this work is given in Ref. 5. 



Kinetics of Polymerization 243 

as the initial condition. Note that the conservation of mass, or of total units, 
implies, for all time, that 

~ k v  k = 1 (2) 
k = l  

The solution by the Ftory-Stockmayer method is based upon the idea, 
whose validity follows from assumption (ii), that the bonding process may be 
thought of as a random process, such that, at each point in time, an 
independent probability p determines whether or not an individual group has 
been reacted. This number p will equal  the total fraction of such groups 
bonded at that time, and thus represent the extent of the reaction. Then v k 
is found as the most probable distribution consistent with the value ofp .  Its 
determination entails an examination of all possible configurations of poly- 
mers, a combinatorial problem which would not be soluble in general without 
making assumption (i). The Flory-Stockmayer theory is by nature static, 
as its basic variable is not time but the parameter p, although the time 
dependence of p may ultimately be determined, and the complete time 
dependence of Vk(t ) may be found. 

To derive a kinetic rate equation of polymerization, consider the 
dynamic process that takes place: As fragments of polymers come into 
contact, chemical bonds are made between the free groups at a constant rate, 
by virtue of assumption (ii). This constant may be taken to be unity by an 
appropriate choice of  time units. The rate (per unit volume) at which i-mers 
and j-mers react to form (i + j ) -mers  is given by the number of  possible 
reactions per unit volume between free groups, which is equal to the product 
of the concentrations of  the two polymers v i and vj multiplied by the number 
of possible ways a single i-met and a singlej-mer may join, denoted by Kij. 
In short, the rate at which i-mers and j-mers combine to form (i + j ) -mers  
is given by K~jviv j.4 Because the concentration of k-mers is increased by all 
reactions between i-mers and j-mers such that i + j  = k, and reduced by 
reactions between k-mers and all the rest, the development of v k is described 
by the equation 

dVkdt - 2il +~.=, K i j v i v j  _ Vk j = l  ~ KkjVj (3) 

This is a generalized form of Smoluchowskrs equation. It represents an 
infinite set of nonlinear differential equations for each given matrix Kij. 
Note that there is no spatial dependence in this equation, as the second 
assumption effectively implies that the polymers are randomly and homo- 

4 The rate that i-mers combine with each other is assumed to be �89 2. 
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geneously distributed in space and the system is infinite. By multiplying 
Eq. (3) by k and summing over all k, one can evidently verify that 
(d/dt) Y~ kv k = 0 and therefore that mass is conserved, as is expressed by 
Eq. (2), for a general K~j (although later we will find some exceptions to 
this). In the following sections, we will derive the appropriate Kij for each 
of the three models and show that the Flory-Stockmayer results, with the 
proper time dependence of p, also satisfy Eq. (3), subject to the initial 
conditions (1). 

The coagulation problem considered by Smoluchowski C4~ concerns the 
formation of clusters in a system of suspended particles. These particles are 
assumed to be in some specified kind of motion, such as Brownian motion, 
which brings them in contact with each other, at which time they may stick 
together, or agglomerate. A k-mer is defined as a cluster comprised o fk  basic 
particles or units of mass. (This is a discrete version of the problem, which 
is the case, for example, for a system that is initially monodisperse.)K~j is now 
a collision matrix which reflects the mechanism of particle motion and 
tendency for adhesion, such that K~jv~vj is the rate per unit volume that 
i-mers and j-mers combine with each other to fo rm( /+  j)-mers (see footnote 
4). Implicit in this is the assumption that these colloidal particles are 
randomly and homogeneously distributed in space for all time. The evolution 
of the distribution v k will be described by Smoluchowski's equation (3). In all 
studies of Smoluchowski's equation only three classes of exact solutions have 
been found, 5 or more precisely, solutions for three classes of collision 
matrices. We will show that these classes correspond to the three polymer 
models considered here, which are also the three basic types studied by 
Flory and Stockmayer. It may be noted that in the literature of coagulation 
physics, these particular collision matrices which allow an exact solution 
represent only approximations to physical processes of interest, and it has not 
been generally appreciated that physical models exist which precisely corre- 
spond to these matrices, as these polymer models do. In the Appendix we 
discuss some new classes of solutions to Smoluchowski's equation and their 
implications for the general question of the conditions for a gelation 
transition to occur. 

2. M O D E L  I 

Flory's solution for this model goes as follows : After reacting for some 
period of time, the system will be composed of linear polymers of varying 
length k, k -- l, 2, 3 ..... and will be described by a parameter p defined as the 
fraction of A groups that are bonded. This p is also equal to the con- 
centration of bonded A's, by virtue of the chosen unit of volume implicit 

5 For a general review, see Ref. 6. 
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in Eq. (1) or (2). In this model, p will also be the fraction, probability, 
and concentration of bonded B's, since there is one B for each A. Choose a 
free A in this " f rozen"  system; the probability Pk that it is at the end of a 
k-mer is given by 

Pk = p k - l (  1 -- P) (4) 

since a k-mer contains exactly k -  1 bonds. The concentration of k-mers 
v k is found by multiplying Pk by the concentration of free A's, which is 1 - p. 
This gives Flory's result (1) that for linear polymers, 

Vk = p k - l ( 1  __p)2 (5) 

One can easily verify that (5) satisfies the conservation law (2) and also that 
the probabilities Pk are properly normalized, 

~ Pk = 1 (6) 
k = l  

To find the time dependence of this solution, observe that assumption (ii) 
implies that the rate of reaction is proportional to the concentration of 
free A's multiplied by the concentration of free B's, both equal to 1 - p .  
Then, assuming that the time has been scaled to make the constant of 
proportionality unity, the differential equation for 1 - p  is 

d 
dt (1 - p )  = - ( 1  - p ) 2  (7) 

The right-hand side is negative because each reaction decreases the popula- 
tion of free ends. The solution to Eq. (7), consistent with (1), is 

p = 1/(1 + t) (8) 

Thusp  increases monotonically in time from zero to one, and Eqs. (5) and (7) 
give the complete time-dependent solution of this problem. Its general prop- 
erties are as follows: The concentration of monomers v 1 decreases monoton- 
ically in time from its value 1 at t = 0, and for large times it approaches 
1/t 2. The concentrations of all other k-mers grow from zero linearly, peak 
at t = (k - 1)/2, and then decay again to zero, eventually as l i t  z. Thus the 
peaks occur sequentially at each half unit of time. Each curve peaks and 
decays in succession as the average size of the polymer increases. 

One can easily verify that Vk(t ) given by Eqs. (5) and (8) satisfies 
Smoluchowski's equation. The matrix Ki~, for all i and j,  is just equal to 2, 
as each of  these linear polymers has a single A end and a single B end, 
and so there are always just two ways the polymers can combine. One can 
also derive the solution directly from the rate equation, with the aid of a 
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generating function of the distribution, (7)'6 or simply by successive solution, 
as was done by Smoluchowski. (4) Smoluchowski was considering the coagu- 
lation of colloidal particles, in which the mechanism of collision is 
dominated by Brownian motion. Smoluchowski showed that the collision 
matrix for this mechanism is proportional to 2 + (i/j) ~/3 + (j/i) 1/3, and for 
i/j ~ 1 this is well approximated by a constant. The solution of vk(t ) 
from (3) in connection with the linear polymerization problem was first done 
by Dostal and Raft, (3) who also showed that (3) is equivalent to the prob- 
abilistic approach. A model for the antigen-antibody response mechanism 
has been shown to be mathematically analogous to this linear polymer model 
by Perelson, (s) who has discussed this mechanism using both approaches. 

3. M O D E L  II 

Because the basic units in this model have two A ends, treelike 
polymers may form, such as in the example of  a 4-mer shown in Fig. 1. 
Flory's solution for the vk goes as follows: Suppose that, at a given frozen 
point in time, a certain fraction p of the A's have reacted. The concentration 
of reacted A's will be 2p, because there are two A's on each unit and there 
is one unit per unit volume on the average. The fraction of reacted B's will 
be 2p, because there are half as many B's as A's, and their concentration 
will also be 2p. Choose a free B in the system; the probability that it is 
at the top of a tree, as in Fig. 1, consisting of exactly k units (or, in 
other words, attached to a k-mer) is given by 

Pk =Pk-l( 1 --P)k+INk (9) 

The first two factors express the probability of  there being k -  1 A-B 
bonds and k + 1 free A's, and Nk gives the number of  possible ways of corn- 

6 In Ref. 7, a continuous distribution was considered, in which case the generating function is 
replaced by the Laplace transform. 

B 

Afl'-.A 
B A~I-.A 

B B 

) , ,) , ,  
A AA A 

Fig. 1. An example of one possible 4-mer of model II. Note that there are five free A 
groups and one free B group. 
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bining these k units. The  distr ibution v k is found by mult iplying Pk by the 
concent ra t ion  of  free B's, O'2) 

v k = (1 -- 2p)pk-l(1 - - p ) k + l N  k (10) 

An explicit expression for N~ m a y  be found as followsfl  Since the 
k - 1 units o f  a k -mer  which are below the " t o p "  unit  (see Fig. 1) m a y  be 
par t i t ioned between the two A ends of  the top  unit in k - 1 ways,  Nk 
satisfies the recursion relat ion 

k - 1  

Nk = ~ U i U k - l - i  (11) 
i = 0  

where we define N o -= 1. Then the generat ing funct ion g(z) defined by 

g(z) =- ~ zkNk (12) 
k = l  

satisfies the quadrat ic  equat ion  

g = z(1 + g)2 (13) 

whose solut ion gives 

1 - 2z - (1 - 4z) ~/2 ~, (2k)! 
g(z) z k (14) 

2z k=l k!  (k + 1)! 

Thus,  

(2k) 
N k - (15) 

k! (k + 1)! 

The t ime deve lopment  o f p  m a y  be found by  the same reasoning as used 
in the previous  example.  The  concent ra t ion  o f  free B's, 1 - 2p, decreases at 
a rate p ropor t iona l  to its p roduc t  with the concent ra t ion  o f  free A's,  2(1 - p) :  

d 
(1 - 2p) = - (1 - 2p)2(1 - p)  (16) 

and the solut ion of  this equat ion  gives 

p = (e ~ -  1)/(2e' - 1) (17) 

(Of  course the same result follows f rom the differential equat ion  for  the 
decrease of  free A's.)  As t varies f rom 0 to ~ ,  p increases m o n o t o n -  
ically f rom zero to 1 / 2 ; p  cannot  go beyond  1/2 because when p = 1/2 
there are no more  free B's. As in the previous  model ,  each curve suc- 
cessively peaks  and decays,  but  here the process goes faster  and  faster as 

7 This is similar to the method of Flory, Ref. 9. Compare Ref. 2. 
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larger polymers are formed, as is reflected by the time at which v k peaks, 
which is given by �89 ln(k + 1)/2. 

Note that Pk and v k are properly normalized only when p ~< 1/2 : 

= {  1' 

k = 1 [ ( 1  - p ) / p ] 2 ,  

~ k V k = {  1' 
k : ,  -- [(1 -- p)/p]2, 

p ~ 1/2 
(18) 

p > 1/2 

p < 1/2 
(19) 

p > 1/2 

These results may be proved from Eqs. (12)--(15) by letting z = p(1 - p ) . S  
Although, as we have noted, there is no physical significance of Eq. (19) for 
p > 1/2 in the polymer problem, Pk and Eq. (18) retain their meaning for all 
p in the context of the construction we used to build (stochastically) the 
polymer trees in the derivation of Pk given by Eq. (9). When p > 1/2, 
Eq. (18) implies that there is a nonzero probability that an infinite cluster 
is attached to the free B, given by 

1 - [(1 - p)/p]2 (20) 

This varies from 0 to 1 as p increases from 1/2 to 1. That  construction is a 
representation of a branching process where, at each generation, either zero 
or two branches occur, with probability 1 - p and p, respectively. This same 
branching process describes the reproduction of a line of  amoebas,  and also 
a chain reaction in uranium, with each unit representing the splitting of an 
individual amoeba or atom. Let p be the probability that an amoeba,  for 
example, survives to reproduction (splitting) age; then Pg of Eq. (9) gives the 
probability that a given amoeba has exactly k + 1 descendants, and Eq. (15) 
gives the probability that it has an infinite number of  descendants, when 
p > 1/2. Here the branched tree represents the entire history of the amoeba 
line or the uranium chain reaction, and may contain many, or even an 
infinite number,  of  generations, while in the related polymer problem the 
" t r ee"  represents just one polymer at a single instant in time. Indeed, the 
study of the descendants of  an individual is the problem (called the 
Gal ton-Watson  problem) that led to the development of  branching theory. 9 

In this model, an i-mer has one free A end and i + 1 free B's, and may 
combine with a j -mer  either by attaching one of its B's to the tatter's free A, 
which it can do in i + 1 ways, or by attaching its one free A to the j -mer 's  
flee B ' s - - i n j  + 1 ways. ThereforeKij should be i + j  + 2. To verify that Vk(t ) 

s Flory gives a simple way to derive these results for p > 1/2 from those for p < 1/2. 
See Ref. 1, Ch. 9. 

9 See, for example, Feller. (1~ Note that branching theory (and thus polymerization) is also 
related to the so-called percolation problem; see, for example, Frisch and Hammersley. (t 1~ 
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given by Eqs. (10) and (17) satisfies Smoluchowski's equation, the relation 

v k = 1 - 2p (21) 

and also the normalization requirement (19) (both only valid for p ~< 1/2) 
are useful. One finds that the time part of v k cancels, and remaining is 
the identity 

1 
-- = +~ (i + j + 2 ) N i N  j (22) (k 1)Nk 2 i =k  

which is satisfied by the Nk of (15), since (22) implies for the generating 
function (12) the differential equation 

.q' - g = g ( g  + g ' )  (23) 

where g'  - z dg /dz ,  whose solution [-consistent with N(1) = 1] is identical to 
Eq. (13). 

The solution to Smoluchowski's equation for a slightly different matrix 
Kij, namely with Kij -- i + j ,  has been previously found by Golovin ~12) and 
Scott~l 3).1 o in the study of  shear coagulation of colloids--that is, coagulation 
when the fluid in which the particles are suspended is in perfect shear flow. 
The actual collision matrix for this problem (e.g., Ref. 15) is given by 
(i~/3 +jl/3)3, which they approximated by i + j  so that the equations are 
solvable. The solution for Ki j  = i + j is quite similar to the solution for 
i + j + 2 in that, for example, the peaks of the concentration curves retain 
their logarithmic spacing. 

Note that this model may be generalized to include any number n of A 
ends on each unit. Both the probabilistic and kinetic methods may be 
generalized to find the solution, which is qualitatively the same as the 
case for n = 2. The collision matrix for the general model is given by 
K i j  = (n - 1)(i + j )  + 2. 

4. M O D E L  III 

The units of this model also form trees, as a consequence of the assump- 
tion that cross-linking is prohibited. This assumption is perhaps less realistic 
here than in the other models, for in this model reactive ends are all of  the 
same type and have many opportunities to bond with each other. (Later, 
however, we will allow for some cross-linking to take place in the gelled 
state.) Again, let p be equal to the fraction of reacted A's. The concen t ra t ion  

of such A's will be 3p, and the concentration of free A's will be 3(1 - p ) ,  
because there are three A ends on each unit and one unit per unit volume, 

1o N o t e  t h a t  t he  s o l u t i o n  fo r  Kij = i + j  - 1 is g iven  b y  L u s h k i n o v .  (14~ 
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on the average. Flory calculated the v k by observing that at a given point in 
time in a system of these polymers the probability that any randomly chosen 
free A end is a part of a k-mer is simply given by the Pk of Eq. (9), 
because in a k-mer there are k - 1 A-A bonds and k + 1 free A's besides 
the one singled out, and because the number of configurations is given by 
the same combinatorial factor N(k) .  Then v k is found by multiplying Pk by 
the concentration of free A's, 3(1 - p), and dividing by the number of free 
A's on a single k-mer, k + 2, so that each configuration is counted only once. 
This gives 

3(1 - P)Pk (2k)! - 3(1 - p)k + 2pk- 1 (24) 
Vk -- k + 2 k!  (k + 2)! 

The time development of p follows from the differential equation for the 
concentration of free A's : 

d 
dt 3(1 - p) = - [3(1 - p)]2 (25) 

whose solution consistent with Eq. (1) is given by 

p = 3t/(1 + 3 0 (26) 

As time goes from zero to infinity, this p increases monotonically from zero 
to one, and the functions Vk(t ) given by Eqs. (24) and (26) successively peak 
and then decay to zero. However, the time at which Vk reaches its maximum 
is given by t = 1/3 - 1/(k + 2), so that by t = 1/3 (when p = 1/2) all the 
curves will have reached their peak and they will all actually be decreasing! 
This abnormal behavior is accompanied by the apparently incorrect normal- 
ization of Vk when p > 1/2: 

1, p ~< 1/2 (27) 
~" kvk = [(1 -- p)/p]3,  p > 1/2 

Also, at p = 1/2 the second moment of v k (which is equal to the mean of 
the mass distribution) becomes infinite: 

f l + p  l + 6 t ,  

1 - 3t (28) 
= J .  1 - ~ 2 p  = P < 1/2 

2 k2Vk 

2p - 1' P > 1/2 

The proofs of these expressions follow from Eq. (14). 
Next, consider the kinetic equation for this model. Since an i-mer has 

i + 2 free A's, any of which may join with any of the j + 2 free A's on a 
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j-mer, Kij is equal to (i + 2)(j + 2). The infinite sum in the second (" loss ' )  
term of Smoluchowski's equation (3) is now given by 

Z (J + 2)vj = (3(1 P), P ~< 1/2 
~3p[(1 - p ) / p ] 3 ,  p > 1/2 (29) 

where we have used Eqs. (9), (18), (24), and (27). One finds that (3) is 
satisfied by Vk(t ) given by (24) and (26) only for t < 1/3. Note that the 
identity (22) is used in this proof  also. For  t > 1/3, the Vk do not 
satisfy (3), and in fact one can show that there is no p(t) such that Vk(p) 
of the form (24) is a solution to (3). 

Before finding consistent solutions past t = 1/3, we will investigate what 
is happening at the instant 1/3. We can assume that the above solution is 
valid up to and including that time. 

The partial sum 

dt kvk (30) 
k = l  

represents the rate (per unit volume) that units that were formerly part of 
polymers of size less than or equal to L are becoming parts of polymers 
whose size is greater than L- - thus  the flux past size L. Using (24) and (26) 
to calculate dvk/dt , we find that (30) is given by 

L 1 +6t  ~L kVk 1--3t k2Vk (31) 
t(1 + 3t) 1 t(1 + 3t) 

Letting L --~ ~ ,  (30) gives the rate at which units attach to an infinite polymer, 
When t < 1/3, this rate is zero, for the two sums above become just the first 
and second moments, and using (27) and (28), we see that those two terms 
cancel. However, when t = 1/3, then second term above is zero for each L, 
and when L - *  oo we get the value 9/2 from the first term. Thus, 

lira ~ kVk = (32) 
L-,~ ~ k = l  ' t = 1/3 

The behavior at t = 1/3 marks the beginnings of the formation of a polymer 
of infinite size--a gel. At the next instant in time, some gel will exist, and 

kv  k will be less than unity. The latter sum represents only finite-sized 
polymers, which we identify with the sol. The difference 1 - ~ kv  k gives the 
concentration of units which belong to the gel, and its time derivative is the 
rate of gel growth, as given by (32). Note that the concentration v of  the 
infinite-size polymers must always be zero, even when a gel is present; this 
is why the gel does not contribute to any of the sums over v k above. 

The gel growth (32) can also be derived in a parallel way from 
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Smoluchowski's equation directly, multiplying (3) by k and summing over 
all k. Again, at the instant t = 1/3, the limit L ~ ~ must be taken very 
carefully because there appears the divergent sum y k2Vk.  Thus, mass 
conservation (2) is not a universal consequence of Smoluchowskrs equation. 

The gelation rate is a discontinuous function of time. One way to 
represent this is by distribution of free A's in the system. In the sol, the 
concentration of free A groups is given by 

[Afreo(sol)] ~ ~, (k + 2)v k (33) 
k = l  

because each k-mer has k + 2 free A groups. An expression for this sum is 
given by (29). When t < 1/3, (33) satisfies the differential equation 

d 
at  [-Afree(s~ = - [Afree(s~ (34) 

which is identical to (25). When t = 1/3, we have the coupled equations 

d 
~ -  [ A f r e e ( S O l ) ]  = - -  [ -Af ree (S~  "12 2 9 (35) 

d 
dt I-Afr~(gel)] - 9 (36) 

These follow from (32), also using the fact that on the average there is 
one free A for each unit in the gel when it is first forming. The 9/2 term 
reflects the formation of gel by cascading growth. 

Thus, for t > 1/3, we found that the solution (24)-(26) does not satisfy 
Smoluchowskrs equation. It is not obvious whether the solution is wrong or 
the equation is wrong, for when a gel forms, we have seen that infinite 
sums may give some unexpected results. We will find both the correct solution 
to Eq. (3) and also the appropriate equation for the solution (24)-(26) and 
reveal the meaning of each. We will then propose a third equation and 
solution completely consistent with the assumption of no cross-linking. The 
kinetic equations will all be of the following form : 

Ov k _ l ~ (i + 2)(j  + 2)vlvj - (k + 2)VkX (37) 
Ot 2 i+j=k 

X represents an expression for the total concentration of free A groups 
with which the sol polymers are allowed to react, and depends upon the way 
in which the gel is assumed to react. 
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4.1. Stockmayer 's  Solut ion 

Suppose that the gel cannot interact with the sol, so that the sol 
polymers can only interact with themselves. Then the quantity X above will 
equal [Afr~e(sol)] : 

X = ~ ( j  + 2)vj (38) 

and in this case Smoluchowski's equation is unchanged by the presence of a 
gel. It follows that [Afree(sol)] satisfies the closed equation (34) for all time, 
and shows that the sol reacts always with itself only. The solution of 
Smoluchowski's equation (3) for t > 1/3 that matches the solution (24)-(26) 
at t = 1/3 with continuous value and first derivative [so that Eq. (3) is also 
satisfied at the point t -- 1/3] is found to be simply 

Vk(t ) = Vk(1/3)[2/(9t -- 1)] (39) 

Here, all the concentration curves, as well as all their moments that are 
finite, diminish in the same way from their values at t - 1/3. During this 
time, the nature of the sol does not change--for  example, the fraction of A's 
that are bonded remains fixed at 1/2 for all time---except that the sol is 
disappearing, since 

{1~ t ~< 1/3 (40) 
k v k =  2/(9 t - -1) ,  t >  1/3 

[Note that the results in Eqs. (27)-(29) for p > 1/2 do not apply for this 
solution.] This apparent loss of mass is again due to the formation of a gel, 
containing units at a concentration 

9t - 3 
1 - ~ kv  k - 9t - 1 (41) 

(for t ~> 1/3). Equation (32) shows that there is a continuous cascading 
process in which matter is lost to infinity for all t > 1/3. The time derivative 
of (38), which is 9/2, matches the rate of gel growth found from Eq. (32). 

As this is formed, it does not, by assumption, incorporate any more 
finite polymers, and so one may assume anything about the intramolecular 
reactions in the gel without affecting the properties of the sol or the amount 
of gel which is present. For  example, if one assumes that the gel cannot cross- 
link, then the fraction of its A ends that are reacted remains fixed at 2/3 no 
matter how much gel exists. On the other hand, if one allows cross-linking, 
then that fraction would approach unity-- in which case the gel would be com- 
pletely cross-linked and would have no free ends to react. This would 
provide one possible explanation of  the gers inability to react with the sol, 
especially if the cross-linking occurs very quickly. Another situation in which 



254 Robert M. Ziff 

the gel would effectively be inactive is one in which spatial homogeneity 
is broken and the gel forms in separated regions of space where its interaction 
with the rest will only be a surface term which is insignificant in an infinite 
system. Note that the overall fraction of A's that are bonded now depends 
on the assumptions made concerning the gel, and therefore the quantity p 
is not as useful a quantity here. It is better to think of two values of p, one 
for the sol (=  1/2) and another for the gel (depending upon its properties). 
The overall p is then a linear combination of these two. This is reminiscent 
of a first-order phase transition, in which many properties are linear 
combinations of those representing each phase. 

This solution found here for t > 1/3 was originally derived by Stock- 
mayer, (2) who showed that it represents the most probable distribution for 
a fixed Y Vk and Y kVk, assuming that the gel is not cross-linked. He also 
compared this to Flory's solution and revealed the nature of each in regard 
to cross-linking. Although he wrote a kinetic equation for this problem, 
identical with Eq. (3) with K,j = (i + 2)(j + 2), and showed that the solution 
for t < 1/3 is given by (24)-(26), he did not solve the.equation for t > 1/3 
and did not discuss the time dependence of this part of the solution. 

4.2. Flory 's  So lu t ion  

Flory considered that v k given by Eq. (24) is still valid when 1/2 < p ~< 1, 
with the apparent deficiency of units, 

1 --Zkvk = 1 - (42)  

representing the concentration of units in the gel. The parameter p in this 
solution is still interpreted as the overall fraction of reacted A's, even when 
a gel is present. These Vk satisfy (37) if X is taken to be 

X = 3(1 - p )  (43)  

for all p, and p( z )  is given by (26). This X may be compared with the value 
given by Smoluchowski's equation, in (29). According to the interpretation 
of p in this solution, X represents the total concentration of free A groups 
[-Afrec(so1)] + [Afro(gel)I, and so the sol polymers react with both the gel 
and sol. 

We can show the nature of this solution by writing separate differential 
equations for tAfroo(sol)] defined by (33) and [Afr~e(gel)]: 

d 
dt [Afr~176 = - [ A  fr~~ -- EAf~(gel)] ~ (k + 2)2Vk (44) 
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d 
at  [-Afree(gel)] = - [Afree(gel ) ]2  - [Af~=(gel)] ~ k(k + 2)v k (45) 

The first equation follows from Eq. (37), with X = [Afreo(sol)] + [Afre~(gel)], 
by multiplying it with k + 2 and summing over all k, and the second follows 
using the fact that the sum [Afre~(sol)] + [Afre~(gel)] = 3(1 - p )  satisfies the 
differential equation (25) for all time. Thus we have separated those free A's 
that belong to finite polymers from those of the gel. The second term in each 
of these equations accounts for the reaction of finite polymers with the con- 
densate, for, when a k-met and a gel combine, which occurs at a rate 
(k + 2)Vkl-Arr~(gel)], the number of unreacted A's (per unit volume) lost to 
[Afre~(sol)] is k + 2, and the number added to [Afr~e(gel)] is k. (This can 
easily be seen by making a sketch of such a reaction.) The first term in 
Eq. (44) represents the reaction of free A's when finite polymers bond 
together. Likewise, the first term in Eq. (45) represents the reaction of the 
free A's on the gel among themselves--that is, cross-linking in the gel. 11 

The existence of  cross-linking can be inferred from the nature of the gel 
itself, for in the gel the fraction of  the A's that are free is given by 

[Af~ee(gel)] p(1 - p) 
(46) 

3(1 - Z kVk) p 2  _ p + 1 

and, when p > 1/2, this is always less than 1/3, while in a k-mer that has no 
cross-links that fraction is given by (k + 1)/3k and is always greater than 1/3. 
The difference between (46) and 1/3 represents the degree of  cross-linking. 

In Eqs. (44) and (45), the sol and gel are shown to be like two 
systems which interact with each other only in proportion to the amount of gel 
present. There is no cascading growth of gel when t > 1/3. At the instant 
t = 1/3, Eqs. (44) and (45) are ambiguous, for as they stand the last terms 
of each are products of [Af~=(gel)], which is zero, and the second moment,  
which is infinite. At t = 1/3, one must refer to Eqs. (35) and (36), which 
express the instantaneous occurrence of cascading. 

4.3. A Third Solut ion 

Consider a system where the A groups belonging to the gel may react 
with those in the sol polymers, as in the previous model, but where now 

11 Flory's solution of  polymerization has been criticized by Stockmayer ~2) and also by 
Pis 'men and Kuchanov  ~16) as being erroneous in that  the gelation appears in an arbitrary 
way. We disagree with this view, since we have shown that  Flory's solution represents 
definite and explicit assumptions concerning the reactivities of  the sol and gel, as 
expressed in Eqs. (44) and (45). Note that  Pis 'men and Kuchanov  showed (using a rate 
equation) that the t ransformation from a sol to a gel can be made while allowing some 
degree of  cross-linking within individual polymers even before gelation occurs. This leads to a 
smoothing out  of  the transition. 
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the gel may not cross-link, just as the polymers in the sol are assumed not 
to cross-link. Here X will equal [Af~(sol)] + [Afr~e(gel)], where the former is 
given by (33) and the latter by 

[A~re~(gel)] = 1 - ~, kv  k (47) 

since, in an un-cross-linked gel, the concentration of free A groups will equal 
the concentration of units. Thus, 

J ( =  1 + 2 ~ v  k (48) 

It follows from Eqs. (37) and (48) that [Arree(sol)] and [Afreo(gel)] satisfy 

d 
dt [Afree(sol)] -= -[Af~ee(sol)] 2 - [-Afr~c(gel)] ~ (k + 2)2vk (49) 

d 
dt [Afr~(gel)] = - [Af~ce(gel)] ~ k ( k  + 2)v k (50) 

for t > 1/3. These are identical to Eqs. (44)--(45) except for the absence of the 
term which represents intramolecular bonding of the gel. The solution of Eqs. 
(37) and (48) for Vk(t ) is of the form 

v k = f ( q ) [ q ( 1  - q)]k (2k)! (51) 
k! (k + 2)! 

where q is some function of time. This is similar in form to Vk(p) given by 
(24). Note that q has no probabilistic significance here. The determination of 
f ( q )  and then q(t) requires the solution of a nonlinear differential equation. 
Although we have not been able to solve that equation in a closed form, 
we have found the approximate result, valid for large t, that 

Vk ~ 3e_~[e_t( 1 _ e_t)]k (2k)! (52) 
k! (k + 2)! 

so that these functions decay exponentially in time. This behavior may be 
deduced from (37) and (48) directly, which, when the v k are small, just 
reduce to 

d 
dt  vk ~ - (k + 2)vk (53) 

The term on the right-hand side comes from the constant term in X, which 
represents a constant supply of free A's for the sol polymers to react with, 
and produces an exponential decay of the sol. 
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5. C O N C L U S I O N S  A N D  F U R T H E R  R E M A R K S  

We have found that the kinetics of the three polymer models are 
described by (3) with the matrix K u given by 

I 
2 (I) (54a) 

K u = i + j  + 2 (II) (54b) 

(i + 2)(j + 2) (III) (54c) 

respectively. Only the first model and the third model (in the ungelled state) 
were previously studied by this approach, in the works referencei~ above. 
The real advantage of reexpressing the polymerization problem in terms of a 
rate equation is especially apparent in the third polymer system, where an 
explicit solution of the gelation kinetics was found. The three models of 
gelation discussed here are described by Eq. (37), in which X, which 
represents the expression for the total concentration of free A ends with 
which the sol polymers may react, is given by 

{ ~ (k + 2)v k (Stockmayer) (55a) 

X = 3(1 - p )  (Flory) (55b) 

1 + 2 ~ k v  k (55c) 

respectively. Note that in Flory's model of gelation, X is expressed not in 
terms of vk, but instead in terms of the probabilistic parameter p, so Eqs. (37) 
and (55b) do not really represent a closed kinetic equation for v k. The 
solutions for the three gelation processes may be compared by considering the 
loss of sol in each : 

( - 2/(9t - 1) 
! 

- ~ kvk = ~ -  l i t  2 

k . ~  - - e  - t  

(Stockmayer) (56a) 

(Flory) (56b) 

(56c) 

In Stockmayer's solution, the sol polymers may not react with free groups 
on the gel and the gel is formed by a continuation of the cascading process 
for all time. In Flory's solution, the sol is allowed to react with the gel and 
so the gelation occurs at a faster rate, even though the cascading process 
stops after t = 1/3. The assumption behind this solution, that the fraction 
of reacted A ends is always equal to p, implies that the gel itself must cross- 
link. In this third solution presented here we do not allow this cross-linking 
to occur, and because the concentration of free groups on the gel does not 
diminish in this way, the conversion of sol into gel occurs the fastest of all. 
In this model, the cascading also stops immediately after t = 1/3. 
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The formation of a gel implies that the conservation of mass as is 
expressed in Eq. (2) is no longer obeyed. This can happen in Stockmayer's 
solution because y~ k2vk is infinite for all t > 1/3, in which case Eq. (2) does 
not follow from (3). Although in the second and third solutions ~ kZvk is 
finite for t > 1/3, the rate equation itself has been modified according to 
(55b) and (55c) such that (2) does not follow. 

That Smoluchowski's equation has singular solutions was first shown, 
in connection with the coagulation problem, by McLeod. ~v) He considered 
the collision matrix K~j = 0, for which the solution is qualitatively very similar 
to the one for Kij -~ (i + 2)(j + 2) as given here. Note that McLeod chose 
this matrix for the purpose of proving a general theorem on the existence 
of solutions rather than for a particular physical model. He did not discuss 
the solution past the singular point. Solutions to Smoluchowski's equation 
have been found only for collision matrices which are linear combinations 
of 1, i + j ,  and 0, as we have noted, and these solutions show singular 
behavior whenever K~j contains the term/j.  One may ask the question : What 
are the general conditions on K~j such that the solution to Smoluchowski's 
equation is singular? We have made a conjecture on these conditions based 
upon the discovery of an enlarged class of solutions to Smoluchowski's 
equation, given in the Appendix. These are only partial solutions in that for 
each K~j only a certain single moment can be found, yet this is enough to 
say whether the solution becomes singular in a finite period of time. For  
this entire class of solutions, which includes all the previously known solu- 
tions, we find that a singularity develops (no matter what the initial condi- 
tions) for all K~j in which the diagonal behavior grows faster t h a n / - - t h a t  
is, when d, defined by 

K u ~ const x i e (57) 

for i--~ oe, is greater than 1. When d ~< 1, the solution is regular. Although 
there may be pathological forms of K~j for which the solutions do not fall 
in this simple classification, (57) is probably a valid criterion for determining 
whether a solution is singular for all K~j of physical interest, since the K~j of 
physical processes are generally well behaved functions of i and j similar in 
form to the K~j for which we have found exact solutions. 

Are there any coagulation problems which satisfy (57) and therefore 
show singular behavior? It seems that for all commonly discussed problems, 
d < 1. However, for an infinite system of gravitationally attracting, randomly 
distributed particles with a Maxwellian velocity distribution, the collision 
matrix is the sum of the free flight matrix and a matrix proportional to 

Kij = (ij)l/2(i + j)l/z(il/s +j l /3)  (58) 



Kinetics of Polymerization 259 

Here d = 11/6 and a singular growth should occur. This may possibly have 
some cosmological implications. 

An example for which i = 1, which should exhibit transitional behavior 
like the case Kij = i + j or ~ +ff + 2, is given by the problem of coagulating 
particles imbedded in a shear flow, ~15) for which Kij is proportional to 
(i~/3 +jl/3)3. In the earliest papers on the subject of coagulation, 
Smoluchowski ~4) described an experiment of Paine (~s) in which this coagula- 
tion process was produced by "moderate  stirring" of a fluid. At a delayed 
point in time, he observed a sudden production of  very large clusters, just 
as one would expect from the solution described above. 

A P P E N D I X  

In this appendix we will derive some new solutions to Smoluchowski's 
equation. These solutions will be expressed in terms of a single moment of 
the distribution. We define the nth moment M n by 

M, = ~ k"Vk (A1) 
k = l  

First, we note the behavior of the M, of the three models discussed in 
the text. In models I and II, where the solution is always regular, all M, are 
positive, finite, monotonic functions of time, decreasing for n < 1 and 
increasing for n > 1. In model lII, however, M 2 becomes infinite at t = 1/3 
according to (28): 

1 + 6 t  
M 2 - -  (A2) 

1 - 3t 

valid for t ~< 1/3, while M0, which is given by 

1 - (3/2)t 
M o -- (A3) 

1 + 3 t  

according to (26), (27), and (29) (valid for t ~< 1/3), shows no irregularities 
at t = 1/3. However, it eventually behaves unphysically as a consequence of  
the gelation transition, for if (A3) is considered for times beyond t = 1/3, 
one sees that at t = 2/3 it goes to zero and then goes negative. Thus, looking 
only at (A3), one can deduce that the complete solution Vk(t ) which (A3) 
represents must cease to be valid at some point in time before t = 2/3, at 
which time a nonanalytic transition to another solution must take place. 
Note that it is not the Mo of the actual solution which becomes negative, 
but the extension or analytic continuation of  Mo of the initial distribution, 
beyond the gel point, and neither is (A3) the M o of any of  the actual solutions 
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of  gelation. One  can show that  all the M.  o f  model  I I I  for n >~ 2 become 
infinite at t = 1/3, and all M.  for n ~< 0 become zero at some t > 1/3. 

To analyze the nature o f  the new solutions, we will assume that  the 
relation between the behavior  o f  the moments  and gelation holds in general. 
Thus,  if the M.  we find turns out to be finite and positive for all time, we 
will assume that  the entire solution is regular, while if M.  -~ ~ at some time 
for n > 1 or M.  ---, 0 at some time for n < 1, we will consider that a gelation 
transit ion occurs at some (unknown) time. 

Now,  it follows f rom (3) that M.  satisfies t2 

d M .  
_ 1 ~ [(i +J)"  _ i" - jn]v ,v~Ki j  (A4) 

dt 2 ~,j = x 

where the double  sum on i and j is unrestricted. Since we are only interested 
in the solution for the times preceding the gelation transition, we need not  
question the validity o f  the interchange of  summat ions  which is required to 
derive (A4), and we can also assume that  M1 = 1. We can choose three 
expressions for Kij which make (A4) a closed equat ion : 

(i) Let 

A6 (A5) 
Kij  = (i + j ) "  - i" - j "  

where A is a constant ,  and n may be thought  o f  as a parameter,  n ~ 1, and 
not  necessarily integral. For  example, when n = 0, 2, and 3, we have 

n = 0: Ki t = -AO" (A6) 

n = 2: K 0 = A / 2  (A7) 

n = 3: Kij = A/3( i  + j )  (A8) 

Since Kij must  be nonnegative,  it follows that  

A < 0 when n < 1 
(A9) 

A > 0 when n > 1 

For  this class o f  K~,  (A4) becomes 

d M .  A 
ijvivj = A M1 z = --A (AIO) 

dt 2 i,j= 1 2 

and so M,  is given by 

M . ( t )  = M.(0) + At /2  ( A l l )  

for an arbi t rary initial distribution M.(0). Thus,  for each value of  the param- 

t2 This  f o r m u l a  a p p e a r s  in D r a k e .  (6) 
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eter n, we generate a unique Kij by (A5), for which the nth moment  of  the 
solution of Smoluchowski's equation is given by (A11). For each K~j we can 
only find one moment  of  the distribution, so the solution is incomplete. 
Yet one moment  is enough to determine whether a gelation transition occurs, 
by using our criteria discussed above. When A < 0, the solution (A11) goes to 
zero in a finite amount  of  time, and by (A9), we conclude that all K~j of 
(A5) with n < 1 lead to singular behavior, while all K~j with n > 1 give 
regular solutions to Smoluchowski's equation. 

(ii) In this case, we let 

Kij = A 

(n # 1). For  example, 

r t = 0 :  

n = 2 :  

n = 3 :  

i"j + ij" 

(i + j ) "  - i" - j ~  

K~j = - A(i + j )  

Kij = A(i + j ) / 2  

Kij = A(i 2 +j2) /3 ( i  + j )  

(A12) 

(A13) 

(A14) 

(A15) 

Again, A must be positive or negative according to (A9). Equation (A4) gives 

dM, /d t  = A M , M  1 (A16) 

o r  

M,( t )  = M,(O)e A~ (A17) 

For  all values of  n this solution is regular for all finite times, and so we con- 
clude that none of these Kij leads to gelation. 

(iii) Let 

ai"j" (A18) 
KiJ = (i + j )"  - i" - j "  

(n # 1). For  example, 

n = 0: Kij = - A  (A19) 

n = 2: Kij = Aij/2 (A20) 

n = 3: Kij = AiZj2/3(i + j )  (A21 

The sign of  A is given by (A9) since Kij >~ O. Equation (A4) becomes 

o r  

d M J d t  = A[M,]  2 

M,( t )  = M,(0)/[1 - AM,(O)t]  

(A22) 

(A23) 
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In this example, a singularity occurs at a positive time if and only if A > 0, 
or w h e n n > l .  

These solutions may be further classified according to the asymptotic 
behavior of  the collision matrices. In Eq. (57) we define the diagonal 
exponent d, and for the three classes of  Kij considered above, d is given by 

d = (ii) (A24) 

(iii) 

Compiling all our results, we find that gelation always corresponds to those 
forms of Kij considered here in which d > 1, and regular solutions correspond 
to the forms of Kij in which d ~< 1. This is our result, which we propose should 
apply to a very large class ofK~j, perhaps including all the common ones of 
physical interest. 

Thus we have found three classes of  Ki~ for which solutions to (A4) can 
be obtained. What  the K~ of each of these classes have in common is the form 
of the expression of a certain moment.  These solutions include the M o and 
M 2 of the three fundamental forms of Kij: 1, i + j ,  ij, which are similar 
to those discussed in the text, and for which the entire solution is known. 
In a sense, the new solutions can be thought of as generalizations of the 
fundamental ones. Note that (A4) can actually be solved with K~j equal to a 
linear combination of (A5), (A12), and (A18); the solution for M~ is formally 
equivalent to a solution found by Drake (6~ for M 2 whenKij  = A + B(i + j )  + 
C/j-- the case of  n - - 2 .  Note also that the procedure we used can be 
generalized to develop closed equations for (d/dt)[~.f(k)Vk] for any weight 
function f ( k ) ,  and thus giving rise to even larger classes of  Ki~ for which 
Smoluchowski's equation has closed solutions. 13 
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